Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biologicals ; 84: 101714, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37804694

ABSTRACT

In the present study, we report the complete genome of five Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from Bangladesh harboring mutations at Spike protein (E484K, Q677H, D614G, A67V, Q52R, Y144del, H69del, V70del, F888L) assigned to the B.1.525 lineage (Variant of interest). Mutations are also found in viral structural proteins other than spike region (E_L21F, M_I82F, N_A12G and N_T208I) and other mutations (NSP3_T1189I, NSP6_S106del, NSP6_F108del, NSP6_G107del, NSP12_P323F) from all of five B.1.525 SARS-CoV-2 variants of Bangladesh. We have also found four unique mutations from two of SARS-CoV-2 B.1.525 variant of Bangladesh. Among the four unique mutations two mutations (NS7a_L96H, NS7a_Y97D) obtained from strain BCSIR-NILMRC-718, one (NSP3_A1430V) from BCSIR-NILMRC-738 and two mutation including one spike protein mutation (NSP2_L444I, Spike_I68 M) present in BCSIR-AFIP-10 strain. The identification of new mutations will contribute to characterizing SARS-CoV-2, to continue tracking its spread and better understanding its biological and clinical features to take medical countermeasures and vaccines.


Subject(s)
COVID-19 , Humans , Bangladesh , COVID-19/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Mutation
2.
Sci Rep ; 13(1): 13146, 2023 08 12.
Article in English | MEDLINE | ID: mdl-37573409

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID -19, is constantly evolving, requiring continuous genomic surveillance. In this study, we used whole-genome sequencing to investigate the genetic epidemiology of SARS-CoV-2 in Bangladesh, with particular emphasis on identifying dominant variants and associated mutations. We used high-throughput next-generation sequencing (NGS) to obtain DNA sequences from COVID-19 patient samples and compared these sequences to the Wuhan SARS-CoV-2 reference genome using the Global Initiative for Sharing All Influenza Data (GISAID). Our phylogenetic and mutational analyzes revealed that the majority (88%) of the samples belonged to the pangolin lineage B.1.1.25, whereas the remaining 11% were assigned to the parental lineage B.1.1. Two main mutations, D614G and P681R, were identified in the spike protein sequences of the samples. The D614G mutation, which is the most common, decreases S1 domain flexibility, whereas the P681R mutation may increase the severity of viral infections by increasing the binding affinity between the spike protein and the ACE2 receptor. We employed molecular modeling techniques, including protein modeling, molecular docking, and quantum mechanics/molecular mechanics (QM/MM) geometry optimization, to build and validate three-dimensional models of the S_D614G-ACE2 and S_P681R-ACE2 complexes from the predominant strains. The description of the binding mode and intermolecular contacts of the referenced systems suggests that the P681R mutation may be associated with increased viral pathogenicity in Bangladeshi patients due to enhanced electrostatic interactions between the mutant spike protein and the human ACE2 receptor, underscoring the importance of continuous genomic surveillance in the fight against COVID -19. Finally, the binding profile of the S_D614G-ACE2 and S_P681R-ACE2 complexes offer valuable insights to deeply understand the binding site characteristics that could help to develop antiviral therapeutics that inhibit protein-protein interactions between SARS-CoV-2 spike protein and human ACE2 receptor.


Subject(s)
COVID-19 , Animals , Humans , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Pangolins/metabolism , Phylogeny , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virulence
3.
Sci Rep ; 13(1): 4122, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36914691

ABSTRACT

The impact of SARS-CoV-2 infection on the nasopharyngeal microbiome has not been well characterised. We sequenced genetic material extracted from nasopharyngeal swabs of SARS-CoV-2-positive individuals who were asymptomatic (n = 14), had mild (n = 64) or severe symptoms (n = 11), as well as from SARS-CoV-2-negative individuals who had never-been infected (n = 5) or had recovered from infection (n = 7). Using robust filters, we identified 1345 taxa with approximately 0.1% or greater read abundance. Overall, the severe cohort microbiome was least diverse. Bacterial pathogens were found in all cohorts, but fungal species identifications were rare. Few taxa were common between cohorts suggesting a limited human nasopharynx core microbiome. Genes encoding resistance mechanisms to 10 antimicrobial classes (> 25% sequence coverages, 315 genes, 63 non-redundant) were identified, with ß-lactam resistance genes near ubiquitous. Patients infected with SARS-CoV-2 (asymptomatic and mild) had a greater incidence of antibiotic resistance genes and a greater microbial burden than the SARS-CoV-2-negative individuals. This should be considered when deciding how to treat COVID-19 related bacterial infections.


Subject(s)
COVID-19 , Coinfection , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Anti-Bacterial Agents , Dysbiosis/genetics , Drug Resistance, Bacterial , Nasopharynx
4.
J Genet Eng Biotechnol ; 20(1): 136, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36125645

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic which has brought a great challenge to public health. After the first emergence of novel coronavirus SARS-CoV-2 in the city of Wuhan, China, in December 2019. As of March 2020, SARS-CoV-2 was first reported in Bangladesh and since then the country has experienced a steady rise in infections, resulting in 13,355,191 cases and 29,024 deaths as of 27 February 2022. Bioinformatics techniques are used to predict B cell and T cell epitopes from the new SARS-CoV-2 spike glycoprotein in order to build a unique multiple epitope vaccine. The immunogenicity, antigenicity scores, and toxicity of these epitopes were evaluated and chosen based on their capacity to elicit an immune response. RESULT: The best multi-epitope of the possible immunogenic property was created by combining epitopes. EAAAK, AAY, and GPGPG linkers were used to connect the epitopes. In several computer-based immune response analyses, this vaccine design was found to be efficient, as well as having high population coverage. CONCLUSION: This research is entirely reliant on the development of epitope-based vaccines, and these in silico findings would represent a major step forward in the development of a vaccine that might eradicate SARS-CoV-2 in Bangladeshi patients.

5.
Microbiol Resour Announc ; 10(48): e0084921, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34854726

ABSTRACT

We report the near-complete genome sequence and phylogenetic analysis of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant (B.1.617.2) strain. This variant is associated with increased transmission and immune evasion.

6.
Sci Rep ; 11(1): 24042, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34911967

ABSTRACT

The microbiota of the nasopharyngeal tract (NT) play a role in host immunity against respiratory infectious diseases. However, scant information is available on interactions of SARS-CoV-2 with the nasopharyngeal microbiome. This study characterizes the effects of SARS-CoV-2 infection on human nasopharyngeal microbiomes and their relevant metabolic functions. Twenty-two (n = 22) nasopharyngeal swab samples (including COVID-19 patients = 8, recovered humans = 7, and healthy people = 7) were collected, and underwent to RNAseq-based metagenomic investigation. Our RNAseq data mapped to 2281 bacterial species (including 1477, 919 and 676 in healthy, COVID-19 and recovered metagenomes, respectively) indicating a distinct microbiome dysbiosis. The COVID-19 and recovered samples included 67% and 77% opportunistic bacterial species, respectively compared to healthy controls. Notably, 79% commensal bacterial species found in healthy controls were not detected in COVID-19 and recovered people. Similar dysbiosis was also found in viral and archaeal fraction of the nasopharyngeal microbiomes. We also detected several altered metabolic pathways and functional genes in the progression and pathophysiology of COVID-19. The nasopharyngeal microbiome dysbiosis and their genomic features determined by our RNAseq analyses shed light on early interactions of SARS-CoV-2 with the nasopharyngeal resident microbiota that might be helpful for developing microbiome-based diagnostics and therapeutics for this novel pandemic disease.


Subject(s)
Bacteria/classification , COVID-19/microbiology , Nasopharynx/microbiology , SARS-CoV-2/genetics , Sequence Analysis, RNA/methods , Adult , Aged , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/pathogenicity , Case-Control Studies , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Metagenomics , Middle Aged , Phylogeny , Symbiosis , Young Adult
7.
Microbiol Resour Announc ; 10(27): e0052421, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34236224

ABSTRACT

This study reports the coding-complete genome sequence, with variant identifications and phylogenetic analysis, of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) P.1 variant (20J/501Y.V3), obtained from an oropharyngeal swab specimen from a female Bangladeshi patient diagnosed with coronavirus disease 2019 (COVID-19) with no travel history.

8.
Microbiol Resour Announc ; 9(39)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32972934

ABSTRACT

We report the sequencing of three severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from Bangladesh. We have identified a unique mutation (NSP2_V480I) in one of the sequenced genomes (isolate hCoV-19/Bangladesh/BCSIR-NILMRC-006/2020) compared to the sequences available in the Global Initiative on Sharing All Influenza Data (GISAID) database. The data from this analysis will contribute to advancing our understanding of the epidemiology of SARS-CoV-2 in Bangladesh as well as worldwide at the molecular level and will identify potential new targets for interventions.

SELECTION OF CITATIONS
SEARCH DETAIL
...